Development and Validation of Crack Growth Models and Life Enhancement Methods for Rotorcraft Damage Tolerance

FAA Contract DTFA03-02-C-00043

S. R. Daniewicz

J. C. Newman, Jr.

J. A. Schneider

J. E. LaRue

Mississippi State University

J. Wang
D. Kannenberg
Sikorsky Aircraft

Objectives

- Develop models for predicting influence of residual stresses on fatigue crack growth and validate by tests on cold-worked holes
- Determine optimum residual stress profiles for fatigue resistance components

Roles and Responsibilities

Sikorsky Aircraft

- Document industry practice for fatigue life enhancement
- Acquisition and preparation of fatigue test specimens
- Model fatigue crack growth using superposition method
- Perform fatigue crack growth testing

Mississippi State University

- Research current and new fatigue life enhancements
- Perform fatigue crack growth testing
- Model fatigue crack growth using finite-element analyses
- Model fatigue crack growth using strip-yield model
- Model fatigue crack growth using superposition method,

Technical Approach

- Fatigue crack growth simulation using finite element analysis, FASTRAN, and elastic superposition
- Conduct fatigue crack growth tests in specimens with and without cold-work

 Optimum residual stress profiles for fatigue resistance components will be characterized

Expenditures

Total expenditures as of 10/31/04 \$307K

	budgeted	encumbered	available		
MSU	\$215K	\$207K	\$8K		
Sikorsky	\$195K	\$100K	\$95K		

Fatigue Crack Growth Data

A.F. Liu, Northrop Corp., 1979 AA 2024-T351 Y = 54 ksi W = 3 in, D = 0.75 in, t = 0.258 in R = 0.10

residual stress induced by single overload S_{max} = 36 ksi

A2-31: S = 18 ksi 0.0405 inch slot

A2-30: S = 15 ksi 0.0720 inch slot

Finite Element Model

Redistribution of Residual Stress Due to Slotting

Redistribution of Cold Work Residual Stress

2024 Fatigue Crack Growth Data from Liu

Predicted Crack Opening Stress (A2-31)

Predicted Crack Opening Stress (A2-30)

Fatigue Crack Growth (A2-31)

Fatigue Crack Growth (A2-30)

FCG Predictions Using Superposition

2024 Fatigue Crack Growth Data

Fatigue Crack Growth (A2-31)

Fatigue Crack Growth (A2-30)

Crack Opening Profile small crack

Crack Opening Profile large crack

Research Results

- elastic superposition is simple AND accurate
- superposition requires an accurate residual stress distribution
- elastic-plastic FEA simulations very sensitive to da/dN – ∆K_{eff} curve used

Technical Issues / Concerns

- more FCG data needed for validation
- completion of fatigue crack growth testing

Planned Research

Use fatigue crack growth data to further validate models

 Determine optimal residual stress distribution for FCG resistance

Fatigue Crack Growth Experiments

- AA 7075-T6
 (B = 0.08 and 3/16 inch)
- constant-amplitude loading
- through-crack at hole
- part-through crack at hole
- with and without cold working

BACKGROUND

Elastic Superposition Approach

$$K = (K)_{loading} + (K)_{residual}$$

if $K < 0$ then take $K = 0$
 $da/dN = f(\Delta K)$

- residual stress not altered by crack growth
- simple elastic perspective
- (K)_{residual} from weight function integration

Physics Based Approach

- residual stress will redistribute as crack grows
- crack tip plasticity not ignored
- wake of plastically deformed material left behind growing crack

Crack Closure Mechanisms

Plasticity-Induced

Roughness-Induced

Oxide-Induced

Viscous Fluid Induced

Transformation-Induced

Effective Crack Driving Force

Elastic-Plastic Finite Element Analyses

- determine residual stress redistribution due to slotting
- include effects of further residual stress redistribution as crack grows
- compute crack opening stress

Simulation of Crack Growth

each load cycle = 3 FE analyses

Analysis Methodology

△K Calculation Using Superposition

Test Specimen Description

Non-cold worked specimens:

7075-T6 aluminum sheet

1.750" x .080" x 8.0" (.010" deep thru notch),

1.750" x .190" x 8.0" (.030" deep corner notch)

.250" DIA reamed hole with breakedge

Cold worked specimens:

Reamed hole DIA: .270, .312, .344

Polished edges and surface at notch

Nylon shims

Cold-worked Specimens: Methodology and Results

-Distance from hole center:

Hole radius + EDM notch = distance

.270/2 + .010 = .145" (.02" crack at 2e6 cycles)

.312/2 +.010 =.165" (no crack at 1e6 cycles)

 $^{\circ}.344/2 + .010 = .182$ " (next test specimen)

7.2 ksi Lower-Stress Non-Cold Worked Specimens (P=polished)

9.25 ksi Higher-Stress Non-Cold Worked Specimens

All specimens Polished at notch

Test Matrix: Non-cold worked and cold worked specimens

Specimen Thickness (in)	Condition	EDM Notch	Approximate EDM Notch Size **	Number of Specimens	Number of Spares	Number of Specimens Tested	Applied Max Load (lb)	Load Ratio
0.08	non-cold worked	thru thickness	0.010	3	3	0	MSU	MSU
0.08	non-cold worked	thru thickness	0.010	3		0	MSU	MSU
0.08	cold worked	thru thickness	0.010	3	3	4 *a	TBD	0.1
0.08	cold worked	thru thickness	0.010	3		0	TBD	0.1
0.19	non-cold worked	corner	0.030	3	3	5	2362 *b	0.1
0.19	non-cold worked	corner	0.030	3		3	3222 *c	0.1
0.19	cold worked	corner	0.030	3	3	0	TBD	0.1
0.19	cold worked	corner	0.030	3		0	TBD	0.1
TBD	laser peen	TBD	TBD	TBD	TBD	0	TBD	TBD
			Total	24	12	8		
*a: 2 at MSU (unrepresentative failures), 2 at Sikorsky (after 1e6 cycles, crack stopped or did not occur)								
*b: 7.2 ksi gross stress (far field)								
*c: 9.25 ksi gross stress								
** EDM notch size is defined as radial length from hole true edge to corner of notch at specimen surface								